
Musicological Interpretability in Generative
Transformers

Nicole Cosme-Clifford
Dept of Music
Yale University

New Haven, CT, USA
nicole.cosme@yale.edu

James Symons
Louiville, KY, USA
WordWood Collective

symons.james@gmail.com

Kavi Kapoor
Department of Music

Harvard University
Cambridge, MA

kmkapoor@college.harvard.edu

Christopher Wm. White
Department of Music and Dance

University of Massachusetts Amherst
Amherst, MA, USA

ORCHID: 0000-0002-6435-6423

Abstract—What might an unsupervised autoregressive trans-
former learn about chord syntax in chorale-style Western-
European-style chord progressions? In this paper, we implement
a novel chord representation to explore the behavior and con-
stitution of such a model with a proprietary corpus of chorale-
style church hymns. We then conduct an explainability study
on our model. First, we track updates to the model’s token
embeddings over time, and we visualize the resulting embedding
spaces to which the model converges. This tells us what kind
of syntactic relationships are learned between chords in this
corpus. We then study chord progressions generated by two
such models, with short and long respective training periods, and
identify what musicological and pedagogical concepts are being
learned at each stage. We find the model learns basic syntactic
categories of chords, and that these categories resonate with some
musicological discourse surrounding chord behavior in this style.
The model also learns several components harmonic behavior in
this repertoire, including smooth voiceleading, ending formulas,
and treatment of chromatic pitches, and learns these concepts in
an order that approximates undergraduate harmony textbooks.
However, the model shows no evidence of learning broader
organizational principles, like phrase structure, repetition, and
meter.

Index Terms—music, transformer, symbolic music, inter-
pretability, alignment, harmonic function

I. INTRODUCTION

Automatic music generation has been a longstanding pursuit
within the domain of Music Information Retrieval (MIR). The
advent of deep learning revolutionized the field in the early
2010s, particularly through the use of Deep Neural Networks
(DNNs), which exhibited the capacity to capture intricate mu-
sical relationships that were previously unattainable [1, 2, 3].
Subsequently, Recurrent Neural Networks (RNNs) and their
Long Short-Term Memory (LSTM) variants enhanced neural
networks’ ability to model sequential patterns in music, sur-
passing the capabilities of Hidden Markov Models (HMMs) [4,
5, 6]. Furthermore, Convolutional Neural Networks (CNNs)
proved valuable in modeling relationships between musical
phenomena derived from spectral features [7, 8, 9]. However,
despite these advancements, both RNN-based and CNN-based
algorithms still encounter challenges in effectively model-

ing and generating musical relationships across broader time
scales [10, 11].

Transformers emerged several years ago as a promising
solution to broader dependency problems in music gener-
ation, particularly in how the musical events are contin-
gent on other events separated by large amounts of time
[12]. Since their inception, Transformers have found exten-
sive applications in various generative music tasks, such as
conditional melody generation [13, 14], chord progression
generation [15], rhythm generation [16], and even full-audio
generation [17]. Moreover, the integration of reinforcement
learning and human-tagged data raises the potential for these
models to grasp increasingly sophisticated aspects of music
composition. Despite their widespread adoption and success,
however, Transformers’ inner workings often remain opaque,
especially concerning the limits of their unsupervised learning
capacity and their alignment with cognitive and pedagogical
understandings of music. Furthermore, because transformers
are frequently complemented with a supervised procedure
or train on human-tagged data, the actual potential of (and
limits to) purely unsupervised machine-learning using raw,
un-tagged data remains unclear. To address this, our study
limits our corpus to unanalyzed pitch events, and uses a simple
Transformer with no supervised supplementations.

Recent studies have taken strides towards addressing the
opacity of Transformers in music generation by exploring the
concept of musical self-attention [18, 19, 20, 21]. However,
these investigations have primarily focused on classification
models for automatic chord recognition (ACR). In such mod-
els, the notion of harmonic function, which involves categoriz-
ing chords based on their syntactic roles in chord progressions,
is treated as an a priori concept. Chords are strictly assigned to
single categorical labels, often derived explicitly from music
theory pedagogy, such as Roman numerals like I or V, which
signify the chord’s position within a key and scale. This cat-
egorical approach clashes with musicological understandings
of harmonic function, which propose that a single chord may
fulfill multiple roles within a musical grammar [22, 23]. To
overcome this limitation, we propose an alternative approach
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based on generative models that embrace the broader and more
nuanced definition of harmonic function in music.

In this study, we employ a generative autoregressive trans-
former to model harmonic progressions from the Western-
European tonal tradition, represented in symbolic notation.
Our training data exclusively utilizes the pitch parameter,
and no human tagging or reinforcement is involved in the
training process. The model undergoes analysis to assess its
musicality and the quality of its generated results. We begin
by examining chord progressions generated by the model after
small-scale training and then proceed to assess the outcomes
after more extensive training. By doing so, we compare the
resulting progressions against pedagogical concepts and norms
associated with this particular musical repertoire. Moreover,
to gain insights into the model’s understanding of harmonic
grammar and function, we visualize chord embeddings at
different layers of the transformer architecture. This analysis
enables us to investigate how the model converges towards an
understanding of harmonic grammar that aligns with musico-
logical pedagogy. Overall, our aim is to identify which aspects
of this musical style the model has learned and, conversely,
which aspects it may be lacking.

II. RELATED WORK

A. Representation of musical events

In the realm of music research, several approaches have
been employed to organize symbolic musical data in formats
that are both machine-learnable and suitable for music gen-
eration. One prevalent method is to utilize MIDI (Musical
Instrument Digital Interface) or an analogous representation. In
the MIDI format, pitches are represented as numerical values,
where 0 corresponds to C-1 (8.18 Hz), and each subsequent
integer represents a half step higher. For instance, middle C
is represented by 60, and the C-sharp above it is represented
by 61.

The usage of integer-based representations proves highly
effective in capturing sequential “harmonies” within a musical
piece. Through the segmentation of MIDI pitch content at each
sequential pitch change, we create a series of ordered moments
representing the harmonic progression [24]. Transposing each
piece in a corpus to the key of C can limit the corpus’s
vocabulary size by mapping all different key instantiations of
a chord progressions to one key [25]. Moreover, by discarding
octave designations, set ordering, and doubling, we can further
decrease vocabulary size (for instance, chords containing the
notes C, E, and G are deemed identical, irrespective of their
octaves or note occurrences). However, for these simplified
representations to be effectively used in generative models,
it becomes essential to devise rules that can accurately map
these simplified tokens back to specific pitches in specific
octaves [26].

Alternatively, some researchers have employed voiceleading
between chords as the central object for musical machine
learning [27, 28]. In this approach, the focus shifts from
the individual sounding events to the changes in each con-
stituent instrument, voice, or musical line between consecutive

moments. The emergent behavior in this context arises not
from the sounding events themselves but rather from the
connections and transitions between these events.

B. Harmonic Function

Harmonic function has been an interest of music researchers
for centuries [29, 30]. The concept groups the wide diversity
of chords, keys, and pitch deployments available to a composer
and reduces them to a handful of functions, a concept roughly
akin to grammatical parts of speech [31]. Unlike grammar,
however, the concept also relies on the pitch constituency
of a chord to define its functional role [32]: because par-
ticular scale degrees have particular syntactic behaviors and
attractions to other scale degrees, a chord’s constituency will
influence its own syntactic behavior. While the constituency
and number of these categories can be contentious [33],
three central functions are often included in these models:
1) a tonic function that contains primarily chords build on
a key’s first scale degree (i.e., a C major triad in the key of
C would be ”tonic”), 2) a dominant function that contains
chords that primarily progress to tonic chords and who use
a key’s fifth scale degree (i.e., a G major triad in C major
is usually a ”dominant” chord, and frequently progresses to
tonic chords), and 3) subdominant chords that succeed tonic
chords and precede either dominant or tonic chords, and
which usually contain a scale’s fourth scale degree (D minor
triads in the key of C major would be a subdominant chords,
insomuch as they usually follow tonic chords and either returns
there or progresses to dominant harmonies). Regardless of its
complexity and fragility, this concept has exhibited cognitive
validity [34]. Additionally, because it relies on the behaviors
and tendencies of a harmony’s constituent notes/scale degrees,
functional harmony goes beyond merely specifying which
chords can follow one another; it also encompasses the concept
of voiceleading. Voiceleading pertains to how the individual
notes (or voices) of the chords connect to one another [23],
with certain pitches within a key tending to progress to other
pitches in very specific ways [30]. In this style, ”smooth”
voiceleading — or, using the smallest amount of distance
between notes in sequential harmonies — is favored ([35]).

Efforts to capture musical grammars and harmonic function
have taken various forms in the realm of machine learning.
One approach involves using the states of a Hidden Markov
Model (HMM) to study this concept [33, 36, 37]. Additionally,
clustering techniques and information bottlenecks have been
employed to extract relevant patterns and structures related to
harmonic function [38, 39].

C. Music Transformers

Music-based transformers emerged soon after text-based
transformers [40]. However, in their early stages, these models
were mostly limited to generating short musical passages,
often lacking musical coherence. Music Transformer was the
first mainstream model to successfully generate music snippets
with long-term structure and internal consistency [12].
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Transformer models have found extensive applications in
various facets of music research. Music generation tasks have
been addressed by models like Museformer [41], Pop Music
Transformer [42], and EnsMuse [43]. The domain of automatic
chord recognition (ACR) has seen the contributions of Har-
mony Transformer (HT) [18] and Bi-Directional Transformer
for Chord Recognition (BTC) [19].

Beyond these tasks, transformer models have demonstrated
their utility in diverse areas. Music tagging has been ex-
plored using vision transformers [44] and semi-supervised
transformers [45]. Novel frequency information has been cap-
tured by transformers processing spectral representations of
audio recordings [46] [47]. Transformers have also shown
their capabilities in style identification research [48] [49].
More recently, transformer models have become assistants to
music composers [50] [51] and have begun to model human
expressiveness in music [52].

Expanding beyond conventional music tasks, transformers
have exhibited their prowess in text-to-audio generation with
ERNIE [53] and MusicLM [54]. Emotion-conditioned music
generation has also been explored [55] [56].

D. Harmonic Function and Emergent Behaviors in ACR
Transformers

Automatic chord recognition (ACR) is a classification prob-
lem that assigns static labels (chord identity labels, chord
quality labels, functional labels) to chords. Bi-Directional
Transformer (BTC) was the first transformer model applied to
ACR [19]. Similar to text-based transformers, it improves upon
the shortcomings of CNNs and RNNs in capturing long-term
dependency information between musical features. Taking a
slightly different approach, Harmony Transformer (HT) is an
autoregressive transformer that predicts chord labels for a
given sequence according to a learned segmentation scheme
[18]. Most relevant to our purposes here, these studies find
that each attention head in an ACR transformer pays attention
to a different section of the input depending on the syntactical
nature of the chord whose label is being predicted [20].
This suggests that harmony-focused transformers have some
implicit sense of harmonic function.

However, the above methods consistently rely on a priori
categories and human labeling, raising concerns about the
potential influence of preconceived notions on the learning
process. Ebrahimzadeh et al. [57] have identified this issue and
propose an unsupervised model that learns a chord embedding
matrix. This matrix is then incorporated into a transformer-
based ACR model, although it remains static during training,
unlike the updating process in BTC or HT. Another approach
to ACR involves the use of pre-trained chord embeddings
based on pitch overlaps between chords [35]. These methods
have shown promising results, yet they once again introduce
predetermined notions of chord relationships into the learning
process.

Rather than focusing on performance gains or pre-training,
we ask if a well-trained end-to-end baseline transformer will

Fig. 1. Normalizing MIDI numbers by indexing from a hymn’s last lowest
pitch

learn to draw clear and sufficient boundaries around gram-
matical harmonic categories in its chord embedding space.
Furthermore, we ask if such boundaries, and the clusters of
chords they define, align with traditional understandings of
harmonic function in common practice Western chorales. If
not, what new things do we learn about harmony and harmonic
function in our corpus?

III. METHODS

A. Corpus Methods

The corpus comprises hymns sourced from the Western
European Christian tradition, presented in MIDI format. These
hymns were gathered from various free online collections
available at openhymnal.org, hymntime.com, lutheranmu-
sic.com, opc.org, mountainretreatorg.net, carolynshymns.com,
gbod3.org, smallchurchmusic.com, and emp.byui.edu. Specif-
ically, representations were chosen based on their chorale-
style homophonic texture, featuring keyboard and/or choir
arrangements. The resulting collection encompassed a total of
2,932 files. As some files captured subtle microtiming from
human performances, the events were bundled into the nearest
eighth note using music21’s quantize function [58]. To ensure
a consistency throughout our training data, files with more than
20% of their chord events unique to that particular file were
excluded. This filtration process resulted in a refined corpus
containing 2,225 files, consistent with the broader harmonic
style of the collection.

In this study, each moment wherein a pitch is added or
subtracted from the texture is considered a chord [25]. The
pitch content of these chords underwent a key-based normal-
ization using a novel method. As depicted in Figure 2, the
last lowest pitch in each hymn is designated as zero, and all
other notes in the hymn are named according to their half-
step distance from that pitch. For instance, a pitch a perfect
fifth above the last lowest pitch is labeled as 7, while a minor
third lower is designated as -3. This normalization approach
ensures consistency across keys. While the chords shown in
Figure 2 might represent different pitches in two keys, they
maintain the same interval relationships with respect to the
hypothetical hymn’s last, lowest note.

These integers were organized as ordered sets, subsequently
represented as sequential cells in a comma-separated values
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(csv) file, accessible upon request. To signify both the begin-
ning of a hymn’s sequence and the conclusion of the previous
one, a consistent Start/End token was inserted between hymns.
For processing, a unicode character was assigned to each
unique set, enabling the representation of the entire corpus as a
unicode string. Concurrently, a decoding key was constructed,
and this string was used as the training corpus. Ultimately,
the final training corpus encompassed 350,528 characters,
featuring a vocabulary of 5,185 unique characters.

This corpus offers a valuable advantage by enabling easy
comparisons with an extensive range of music-theory pedagog-
ical validation. Christian hymnody often employs functional
harmony, a grammar which was both prevalent in European
and American art- and sacred-music composition from the
17th to the 20th centuries, and continues to influence contem-
porary traditional-sounding music [59]. Additionally, analysts
of this chord grammar and of this style explicitly reference
harmonic function [60]. This grammar also boasts a long
and intricate pedagogical heritage [23, 22]. Consequently, this
well-defined harmonic grammar serves as a robust yardstick to
evaluate the output of a model trained on this specific musical
style.

B. Computational Methods

Architecture. Our model, shown in Figure 1, is a decoder-
only autoregressive transformer, an altered version of Andrej
Karpathy’s NanoGPT [61]. It is deliberately simple and narrow
in scope, as we wanted to investigate how effectively a baseline
transformer with minimal training could learn difficult con-
cepts like chord syntax and harmonic function. As explained
in the preceding subsection, our model’s input is a sequence of
chords, each of which is represented by a unicode character.
The model otherwise follows the standard architecture of a
decoder-only transformer: it has L layers, each of which does
multi-head self-attention followed by a feedforward pass and a
normalization layer. The output of the final layer is then passed
through a fully-connected layer and a softmax activation layer.
At time step t, this draws a probability distribution over all
possible unicode chord tokens, from which the model samples
to generate a token at time step t+1.

For the purposes of this paper our hyperparameters were
set as follows: a block size of 6, a learning rate of 1e−5,
64-dim embedding vectors, 4 attention heads, 4 layers, and
a 20% dropout rate. In addition to optimizing our model in
mathematical terms (i.e. cross-entropy loss), we also optimize
in musicological terms by selecting models that produced
desirable musical features for further fine-tuning.

Evaluation. Two primary methods were used to evaluate and
analyze the model’s output.

1) We extract the model’s embedding vectors (the result of
its encoder) and the linear transformations of these that result
from each self-attention layer, l. In each case, we project these
vectors to a 2D space to study how the model’s understanding
of a chord’s grammatical (or, functional) similarity changes
as it trains and as the model’s layers become deeper. Figure
3 shows the resulting projections of (a) the embedding space

Fig. 2. Model architecture. Our model has two encoding steps: chord vectors
to single unicode characters, and unicode characters to embedding vectors.
Those vectors then pass through the body of the model: a series of attention
layers, then linear layer, then softmax activation. Last, the model generates
a unicode sequence (its predicted chord progression) and we decode that
sequence back into chord vectors.

and (b) the logit vector space from the final self-attention layer.
This enables us to evaluate the full scope of our model’s grasp
on harmonic function.

2) We undertook expert analysis of our model’s outputs at
10,000 and 1,000,000 training iterations (about 10 minutes and
12 hours of training, respectively). After each of these training
sessions, the model generated 5 ”compositions” by producing
unicode tokens until a Start/End token was generated. These
tokens were translated back into chord structures, which were
themselves translated into MIDI representations, such that 0
aligned with C3 (the octave below middle C). While future
studies would use external evaluators to produce this feedback,
in the current pilot study the authors evaluated the results. Each
of the authors is an expert in Western functional harmony, with
several having extensive experience in in European Hymnody.
We evaluate these compositions for their alignment to music-
theoretical benchmark concepts, such as the ability to model
cadential syntax, assert a tonic, and modulate.
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IV. RESULTS

n-dimensional vector embedding Figure 3 illustrates two
representative graphs depicting the chord syntax learned by
our model after 1 million iterations. The chords are presented
using a simplified representation based on octave equivalence
modulo 12 (e.g., all C’s represented as 0, all D’s as 2, etc.,
as shown in the legend). We have color-coded the chords
to indicate their degree constituency, particularly whether
they are rooted on the tonic scale degree (blue), rooted on
the dominant degree (orange), or prominently feature the
subdominant scale degree (green and purple). This was done to
make the graph’s clusters’ interaction with traditional notions
of harmonic function easier to analyze. Although the clustering
is not perfect from a musicological or pedagogical perspective,
several notable groupings occur. For one, the dominant triad
[2, 7, 11] often clusters with the dominant harmony with an
added seventh [2, 5, 7, 11]. Additionally, the subdominant
triad [0, 5, 9] clusters with other triads that share two of its
scale degrees (like [2, 5, 9] and [0, 4, 9], the supertonic and
submediant triads).

Conversely, some clusters appear atypical based on chord
spelling but correctly represent chords with similar syntactic
functions. For instance, the orange cluster near the bottom of
Figure 3(a) (left of center), contains chords that are spelled
like dominant-functioning chords but serve as a hymn’s initial
chord, thus sharing the phrase-initiating function of the nearby
blue, tonic-functioning chords.

Moreover, the purple dots in various clusters of Figure 3(a)
capture the versatile functions of the submediant (vi) triad
[0, 4, 9]. Some clusters seem to express its function as a
substitute for a tonic chords, while others denote its function as
a subdominant or secondary dominant. (The respective clusters
for these functions emerge near the top left corner of the
graph, close to the green cluster at the bottom right corner,
and adjacent to the orange clusters on the right side.) These
grammatical roles are precisely those described in harmony
textbooks ([23, 22, 33].

Interpretation of outputs. Figure 4 displays outputs from
the model after 10,000 training iterations. (NB: the output
does not have a designated meter, but for ease of read-
ing, we have added simple quadruple bar lines.) Remark-
ably, even with this relatively small amount of training, the
model exhibits emergent behaviors that reflect grammatical
organization. Diatonic successions (or, ”white-note” chords
in C major), follow stylistically coherent chord orderings
and demonstrate predictable voiceleading. Note, for instance,
several instances of traditional dominant-to-tonic and tonic-to-
subdominant progressions, along with the smooth, step-wise
voiceleading between harmonies. For instance, in the first, left-
hand ”Successful Learning” passage, we observe a penultimate
first-inversion C major triad leading into the final harmony
with a voice exchange between the lower two voices. Further-
more, the initial two chords of that measure feature a rising
lowest, bass voice paired with descending upper voices; both
of these techniques are commonly taught in undergraduate

textbooks [23]. Additionally, sequences preceding ”Start/End”
tokens, marking the ends of phrases, exhibit recognizable stock
patterns often used to conclude hymns. For instance, Figure 4
illustrates a phrase ending with a traditional “Amen” cadence
(note the subdominant F major harmony moving to the final
C major triads).

On the other hand, the ”Unsuccessful Learning” row in the
figure presents sequences that deviate from the stylistic norms.
In the left-hand phrase, harmonies from the parallel minor
(C minor in this case) appear in an unusual (seemingly arbi-
trary) grammatical context, and the voiceleading is disjointed,
featuring numerous large leaps from one chord to the next.
Additionally, the model has not grasped the behavior of certain
chords in this style that follow strict grammatical constraints.
Specifically, chords with raised notes should lead upward,
and chords with lowered notes should lead downward ——
a characteristic of chromatic chords in this style. However,
the right-hand ”Unsuccessful Learning” passage flouts these
strictures (Note: the example is a composite of segments from
various outputs, with double bar lines denoting the boundaries
between these segments).

Continued training, however, adds sophistication to these
models, as shown in Figure 5. After a million iterations,
the outputs now both feature stylistically coherent passages
in the relative minor and expected resolutions of chromatic
harmonies (although there are intermittent mistakes as shown
in the figure), and even feature some extended passages
of sophisticated chromatic harmony. Here, not only are the
orderings of the harmonies stylistically grammatical, but the
voiceleading between the chords follows the expected smooth,
step-wise norms.

V. DISCUSSION

Pedagogical Resonance and Learning. The model’s im-
provements during both shorter and longer training sessions
demonstrate alignment with the ordering of comparable ped-
agogical material. Tonal harmony textbooks often introduce
fundamental concepts like ”Tonic, Dominant, and Voice Lead-
ing” or ”Expanding Tonic and Dominant” before covering
more advanced topics such as ”Applied Chord,” ”Modula-
tion,” and ”Modal Mixture” [22, 23]. In other words, when
it first learns diatonic chords progressions and subsequently
adds knowledge of chromatic and minor-mode harmony, the
model’s learning progression echoes a pedagogical sequence.

Moreover, behavioral experiments have revealed that in-
dividuals with greater musical training develop heightened
sensitivity to the behaviors of chromatic chords [62, 34] and
the distinct voiceleading tendencies found in specific musical
styles [63]. The model’s learning order also parallel this
difference between less and more experienced musicians.

The model’s learning order is likely influenced by the
statistical frequency and predictability of different musical
events. Frequent and highly predictable events are learned
first, while less common and more variable sequences require
additional iterations for the model to master. This learning
process mirrors how humans gain confidence in predicting
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Fig. 3. 2-D representations of our model’s embedding vector space and final logit vector space, respectively. Both graphs result from t-SNE reduction. That is,
both are visual proxies that enable us to make inferences about the model’s clustering tendencies in high-dimensional embedding spaces. Each dot represents
a chord and is shaded according to that chord’s pitch-class constituents, as shown in the legend.

Fig. 4. a) A brief summary of the emergent behavior of the GPT when
trained briefly. Diatonic (”white-note”) harmony appears to be learned along
with some concluding gestures; usage of chromatic and minor-mode (”black-
note”) harmony is less successful

harmonic successions—growing more certain when encounter-
ing frequent and predictable events within a familiar musical
corpus [64].

Grammar, Voiceleading, and Harmonic Function. Both the
graphing and output analyses of the model reveal its ability to

Fig. 5. A brief summary of the emergent behavior of the GPT when trained for
12 hours. While some subtle aspects of harmonic syntax are not absent, many
chromatic and minor-mode gestures are learned, as are more sophisticated
ending structures.

capture fundamental aspects of the chord syntax within this
musical style, and Figures 4 and 5’s outputs demonstrate
the model’s proficiency in expressing step-wise voiceleading
characteristic of this style. Notably, the model appears to have
internalized the various chord types that commonly appear
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at different points in a musical phrase, particularly evident
in its production of convincing and stylistic ending patterns.
This suggests the model’s broader awareness of grammatical
categorization.

The graphical analyses further indicate that the model
creates similar encoding vectors for chords with the same
grammatical roles— the same harmonic function. This con-
sistent encoding highlights the model’s capacity to identify
and differentiate chords based on their shared roles within the
musical contexts.

What fails to be learned with no supervision. Despite the
transformer’s ability to learn aspects of voiceleading and chord
grammar without supervision or reinforcement, certain crucial
components of this musical style remain absent in the model’s
embeddings and outputs. Notably, both meter and phrase
structure, which serve as significant organizing principles in
this style, are not expressed. Musical phrases in this style
typically exhibit internal repetitions and concluding gestures
in predictable locations, often every 4 or 8 measures [65, 66].
However, the model’s outputs show no evidence of this type of
organizational structure. Furthermore, even in the absence of
rhythm, chord progressions generally convey some aspect of a
passage’s meter. This may involve the repetition of harmonic
patterns or the alternation of stable and unstable harmonies
[67, 32]. Again, the outputs exhibited no indication of such
patterning.

Our model’s limitations may stem from factors such as the
relatively small corpus size and the minimal length of training.
In contrast to the vast availability of written texts for training
transformers in natural language processing, symbolic musical
corpora of hymns are significantly smaller and less diverse.
Moreover, music presents unique challenges for unsupervised
learning. While spoken language can often be learned through
passive exposure, producing convincing musical expressions
typically requires explicit tutelage [32]. The gap between
music listeners and music producers may similarly apply to the
limits of our model’s outputs, reflecting the need for expert-
guided musical learning. For instance, learning concepts like
meter and phrasing may rely on bodily engagement with music
[68, 69] or be facilitated by the particular biological constraints
of the human brain [70]. These factors might make learning
these concepts solely through unsupervised machine learning
exceedingly challenging, if not impossible.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper has demonstrated the potential of a GPT-style
transformer to learn musicologically significant behaviors
through unsupervised training on a corpus of chorale-style
hymns. The model successfully acquired basic chord gram-
mar, harmonic function, and the accompanying voiceleading
behaviors characteristic of this musical style. However, it also
highlighted limitations in the learning process, as the model’s
outputs lacked metrical or phrase structure.

Future studies should aim to address these limitations by ex-
panding the size of the corpus and experimenting with longer
training periods. Introducing semi-supervised components to

the model could provide insights into the relative efficacy of
unsupervised versus supervised machine learning for musical
generative modeling using Transformers.

Additionally, connecting such models to human behavioral
and cognitive theory holds promise. Designing tests to directly
compare similarities and differences between human and ma-
chine learning of musical material could offer valuable insights
into the learning processes involved in music generation.
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