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The computational approach of autocorrelation relies on recurrent patterns within a musical
signal to identify and analyse the meter of musical passages. This paper suggests that the
autocorrelation process can act as a computational proxy for the act of period extraction, a
crucial aspect of the cognition of musical meter, by identifying periodicities with which similar
events tend to occur within a musical signal. Three analytical vignettes highlight three aspects
of the identified patterns:1) that the similarities between manifestations of the same patterns
are often inexact, 2) that these patterns have ambiguous boundaries, and 3) that many more
patterns exist on the musical surface than contribute to the passage’s notated/felt meter, each
of which overlap with observations from music theory and behavioral research. An Online
Supplement at chriswmwhite.com/autocorrelation contains accompanying data.

Keywords: meter; rhythm; harmony; computation; music theory

2010 Mathematics Subject Classification: 00A65; 62P15; 91E10; 94A17
2012 Computing Classification Scheme: Applied computing Sound and music computing

1. Introduction

Meter is a phenomenon of patterns. In general, theorists imagine meter as arising from
a series of consistently paced accents (Lerdahl and Jackendo↵ 1983; Kozak 2020; Krebs
1999; Repp 1998), as involving a listener who expects that pacing to continue into the
future (Hasty 1997; London 2004), and as grouping adjacent pulses to form a hierarchy
of stronger and weaker pulses (Cooper and Meyer 1960; Lerdahl and Jackendo↵ 1983),
with quicker pulses evenly dividing broader pulses by two or three, creating consistent
duple or triple relationships between levels (Cohn 2001, 2020). London (2004) suggests
that the process of identifying a meter involves two complementary methods: 1) period
extraction, and 2) template matching. The former – and more basic – strategy identifies
patterns of recurrent periodicities present in some musical signal; the latter involves an
approach that categorizes and organizes events into some a priori understanding of metric
hierarchies and relationships.
Computational approaches to meter can broadly be seen to fall roughly along London’s

divide. The first camp includes those techniques that identify periodic patterns within
some musical timeline, and then equates the patterns that emerge from those patterns
with metrical pulses. This general approach includes such techniques as Discrete Fourier
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Transforms (Amiot 2016), wavelet analyses (Velarde, Meredith, and Weyde 2016), and
resonant neural networks (Large, Herrera, and Velasco 2015). However, perhaps the most
straightforward and oldest of these approaches is autocorrelation, a technique that iden-
tifies the periods at which similar events appear in some musical timeline (Boone 2000;
Brown 1993; Eck 2006; Eerola and Toiviainen 2004; Palmer and Krumhansl 1990; Volk
2008). While the basic method has been shown to identify the notated time signature of
music in various styles and genres with a reasonably high level of precision (Gouyon et al.
2006; White 2019a), researchers have supplemented this technique with such additions
as Expectation Maximization (de Haas and Volk 2016) and Shannon entropy (Eck and
Casagrande 2005) to increase the process’s utility and precision.
Much recent computational research can be seen as modeling the processes described by

a template-matching, approach (at least roughly). In many such approaches, some train-
ing session or encoded expert knowledge provides a model with expectations that allow
it to categorize events into strong and weak beats, and to arrange those event into a met-
ric hierarchy. Such approaches include Context Free Grammars (McLeod and Steedman
2017; Rohrmeier 2020), Hidden Markov Models (Khadkevich et al. 2012; Papadopoulos
and Peeters 2011), and deep learning techniques such as Support Vector Machines (Du-
rand, David, and Richard 2014), Recurrent Neural Networks (Durand et al. 2015; Böck,
Krebs, and Widmer 2016), and Temporal Convolutional Networks (Böck and Davies
2020). These approaches have proven to perform quite well against a ground truth, and
represent the current state of the art in meter detection within the music information
retrieval literature.
However, while computational music research is often driven by the desire for an opti-

mally e�cacious model – that is, the best meter-finding model is the one whose output
conforms to some expectation of desired results – such research may also be motivated
by investigating the contours of the musical concept being modeled. It is with this lat-
ter purpose in mind that this paper approaches computational models of meter, and
which motivates its study of a topic that, on the one hand constitutes the more elemen-
tary side of meter finding, while on the other hand represents a primary foundation of
the theoretical concept of meter: period extraction. This study investigates some basic
computational tactics underpinning period extraction, specifically analyzing the periodic
patterns identified therein. While the specific mathematics and engineering behind the
various approaches to computational period extraction substantially di↵er, the autocor-
relation approach can be seen as representing the basic framework of many of these
applications, as noted in Eck and Casagrande (2005), and Kim and Large (2017). This
paper therefore adopts an autocorrelation approach to identify isochronous patterns in
order to observe these patterns’ attributes. Analyzing the musical characteristics of these
patterns can then yield insights into the roles that period extraction and pattern finding
potentially play within theoretical and cognitive concepts of meter. The broader goal of
this study, then, is to provide an initial investigation into some intersections between com-
putational, cognitive, and theoretical approaches to isochronous patterns within models
of musical meter.
This paper will first o↵er a brief overview of the autocorrelation process, after which I

will present three illustrative analytical vignettes using autocorrelation. I will highlight
three particular aspects of the patterns identified in these analyses: 1) that the process
often identifies patterns that are not particularly similar, but more similar than other
options (or, fuzzy patterns), 2) that these patterns have ambiguous boundaries (or, the
patterns are unbounded); and 3) that patterns exist on the musical surface in excess
of those suggested by the notated/felt meter (or, excessive patterns). I then connect
these aspects of computational periodic pattern identification to some broader theoretical
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Figure 1. a) An adaptation of Fanny Mendelssohn Hensel’s “Die Mainacht,” Op. 9 No. 6, mm. 1-2; b) the music,
represented as timelines of various parameters, such that each value corresponds to a consecutive eighth-note
pulse, along with sample rotations; c) the resulting autocorrelation values for each timeline.

and behavioral aspects of musical meter. While a thorough comparison with template-
matching/categorization approaches is outside the boundaries of this paper, I end by
situating this paper’s results within the broader scope of computational approaches to
meter finding.
For optimal transparency and accessibility, the computational implementations of each

of the following analyses are presented as spreadsheets in this paper’s Online Supple-
ment. In this format, readers with no computational background can examine the en-
gineering behind my analyses, and the procedures can be replicated or implemented
in any computational environment with relative ease. These materials can be found at
chriswmwhite.com/autocorrelation.

2. Autocorrelation: its engineering and its usage in meter finding

At its most basic, an autocorrelation approach to meter finding frames a musical passage
as a timeline of values, with each consecutive point in that timeline representing an
isochronous pulse (i.e., they are separated by the same time interval). Figure 1a shows
a score for the opening measures of Fanny Mendelssohn Hensel’s “Die Mainacht,” while
FigureFigure 1b represents the events of each consecutive eighth-note pulse, and does
so in three ways: as the number of note onsets at each moment, as the longest duration
appearing at each moment (measured in eighth notes), and as the average pitch at each
moment (measured in MIDI pitch, and counting only pitches that begin at each moment).
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An autocorrelation method compares the initial – the prime – vector to each possible
rotation of the timeline. Selected rotations appear under the note-onset timeline. Even
visually, it is apparent that some of these rotations have more in common with the
prime vector than do others. Rotating the vector by a single value – shifting each value
by one eighth note – mostly aligns zeros with non-zeros: this vector is very unlike the
prime. However, because the note-onset patterns of both measures are identical, rotating
the vector twelve eighth-notes (or, a full measure) creates an identical correspondence.
Autocorrelation quantifies these comparisons by correlating each rotation to its prime.
For these calculations, a standard bivariate correlation is used (Pearson’s r). Figure 1c
shows the resulting correlation coe�cients for all rotations for each parameter, with the x-
axis metered such that each addition of 0.5 indicates a sequential rotation by eighth note.
(NB: there can be some variation surrounding how to apply autocorrelation techniques;
the approach outlined here rotates the whole length of the vector under consideration
and consistently compares vectors of the same length to one another.)
To find the passage’s meter, one can identify equally spaced peaks in the correlation

coe�cients, pinpointing isochronous patterns of consistent levels of similarity. In the
current example, the most similarity occurs at the duration of the measure – events six
quarter notes away from one another are quite similar. The note-onset and average-pitch
timelines show the half-measure as the next most-similar isochronous periodicity, while
the note-onset and duration timelines clearly show a quarter pulse. (The more-ambiguous
quarter-note pulse of the average-pitch timeline is due to the stepwise motion of the
melody and the skips to adjacent chord tones in the accompaniment: the average pitch
heights of moments separated an eighth note are often quite similar in this texture!)
In what follows, I use three musical excerpts to illustrate and describe the particular
patterns identified by the procedure.

3. Three analytical vignettes: some representative examples of

meter-finding using autocorrelation

3.1. Procedure

The following analyses use three parameters to construct timelines: note onsets, aver-
age pitch height, and duration. These three features are used because they have been
shown to be salient to meter finding in both the cognitive and computational literature,
with behavioral models showing that listeners associate a feeling of accent with relative
peaks in note onsets (White 2019b), with certain durational patterns (Iversen, Patel,
and Ohgushi 2008; Vos 1977; Woodrow 1951), as well as with changes in pitch con-
tour (Huron and Royal (1996), Thomassen (1982), Acevedo, Temperley, and Pfordresher
(2014), Prince and Rice (2018)). Similarly, computational models often rely on durational
patterns (McLeod and Steedman (2017), Nakamura et al. (2017)) and note-onset data
(Gouyon and Dixon (2005) and Gouyon et al. (2006); this parameter is generally used
when analyzing symbolic score data, as onsets can serve as a proxy for loudness). Ad-
ditionally, spectrogram models implicitly involve information about pitch distributions
(e.g., Böck and Davies (2020); admittedly, the pitch information involved in a spectro-
gram will be more nuanced than the symbolic pitch data used here). Again, note that my
goal here is simply to illustrate and study the patterns found within a period-extraction
model: other musical features like harmonic change, melodic leaps, or phrasing – or the
combination of multiple features – could also participate in the meter of these passages.
The process as implemented here identifies the shortest note duration, divides the
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pieces into consecutive events of that duration, and creates a timeline such that each
value corresponds to each consecutive slice (this duration was the eighth note in Figure 1,
for instance). For simplicity, if the quickest duration of the passage only occurs a handful
of times (as will be the case for the sixteenth-note pulse in Figure 2) or has an ambiguous
duration (as will be the case for the grace notes in Figure 3), the next-quickest pulse is
used. The three approaches are implemented as follows: the note onset approach shows
the number of notes that initiate/begin at each pulse, with zero indicating either rests or
sustained events. The average-pitch approach associates MIDI numbers with each pitch
onset, and averages these numbers; sustained notes do not contribute to the average pitch
height. The duration approach represents the length of the longest note begun at each
timepoint (with the duration generating the timeline assigned a value of 1). For simplicity
and brevity, the following analyses presents a selection of these approaches, tailored to
the characteristics of each example. Finally, given that this paper is interrogating the
patterns used in these processes rather than advocating for a particular approach, I do
not implement a rigorous meter-finding or time-signature-identification step but rather
simply comment on the periodicities that would be available to such a process.

3.2. Vignette 1: fuzzy patterns in Ludwig v. Beethoven’s string quartet, op.
18, no 1

Figure 2 shows the opening to Ludwig v. Beethoven’s string quartet opus 18, number
1, with its corresponding note-onset vector. Autocorrelation identifies a triple grouping
of quarter notes, and duple groupings of 16th notes and 8th notes: these are precisely
the periodicities indicated by the time signature. It also identifies a sextuple and 24-tet
grouping of quarter notes, thus identifying a two-measure hypermeter, and the eight-
measure phrase. These groupings are noted by the brackets underneath the timeline.
Several of these identified patterns are straightforward and visually apparent. The fact

that several motives explicitly return (mm. 1 and 3, mm. 9 and 11) and several rhythmic
profiles return (mm. 2 and 4, mm. 6 and 8, 11 and 13, mm. 14 and 16, mm. 15 and
17) results in the a two-bar hypermetric patterns. The duple divisions of the quarter-
note pulse are also straightforward to identify: more events occur on the quarter pulses
than on the alternating eighth pulses. The dotted-half-note patterns, however, are less
immediately apparent, but are still present. The music’s recurrent motives tend to place
events with longer durations at the beginnings of measures while events with shorter
durations appear at the ends of measures, thereby creating patterns on onsets whose
density fluctuations at the dotted-quarter pulse.
This dotted-quarter pulse exhibits what I call fuzzy patterns (roughly adapting the

adjective’s usage in Quinn, 2001). The autocorrelation procedure illustrates peaks at
that pulse not because all – or even most – events at the remove of that duration are
similar, but because more similarities arise at that pulse duration than at other durations
(while the rotations of 3 and 9 and 15 quarter notes return a coe�cient of only 0.2, the
surrounding values are considerably lower).

3.3. Vignette 2: unbounded patterns in J. Straus’s An der schönen blauen
Donau—

Figure 3 illustrates a piano reduction of the opening to the Johann Straus waltz ”An der
schönen blauen Donau”, with timelines indicating note onsets and average pitch height,
now divided into each quarter pulse. The patterns of note onsets produced by the “Oom-
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Figure 2. Ludwig v. Beethoven, String Quartet, Op 18, no 1, mm. 1-8 and accompanying autocorrelations

pa-pa” oscillations of the waltz provide a clear triple pattern; the relatively low pitches
that initiate each measure create a similar three-quarter pattern within the average pitch
height timeline. The melody’s consistent shift between a treble register (mm. 1, 5, 9) and
a soprano register (mm. 2-4, 6-8) provides a further four-measure pattern within that
approach.
This example provides further instances of fuzzy patterns returned within this passage:

a rotation of two-measures aligns events like the rising three-quarter-note gestures of
measures 1 and 5 with the characteristic Viennese accents on the first and third beats
of measures 3 and 7, resulting in a low correlation (a -.17 correlation coe�cient, shown
in the supplement). Again, however, this alignment produces a correlation better than
the surrounding quarter notes. Such local maxima within otherwise-low coe�cients can
combine with spikes at the third and ninth rotations to express the dotted-quarter pulse.
More notable, however, is that the arrangement of correlations does not indicate that

the first measure would be felt as an upbeat to the proceeding measures. Note that
Figure 3 includes hypermetric and phrasing annotations for the passage (drawn from
Rothstein (1989)) which show that – while there exists a four-bar hypermeter and a
four-bar phrase – the phrase and hypermeter are out of phase, such that the first mea-
sure is felt as a hyper-upbeat to the second. The autocorrelations are agnostic to this
di↵erence, indicating only that there is a four-bar hyper-measure, not where it begins.
These patterns simply rely on their periodic similarities rather than specific boundaries
that denote their beginnings and endings – these patterns are unbounded. Below, I’ll re-
turn to the implications of unbounded patterns as regards this procedure’s identification
of meter. (The “unboundedness” of the patterns in somewhat obscured in the orthogra-
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Figure 3. J. Strauss II, An der schönen blauen Donau, Op. 314, mm. 19, with annotations from the analysis of
Rothstein 1989, 4-7

phy of the figures, as the brackets have beginnings and endings. It is useful to recall that,
for instance, two adjacent measure-long brackets simply illustrate that events removed
at the distance of a measure in that passage are similar.)

3.4. Vignette 3: excessive patterns in Johann S. Bach’s WTC 1, no. 1

Figure 4 shows the first two measures of Prelude 1 from Johann S. Bach’s Well Tempered
Clavier, Book 1, along with duration and pitch timelines with sixteenth-note divisions.
Both timelines identify periodicities at the half-note pulse, a predictable result given that
Bach’s figuration pattern repeats every half measure. What’s more notable, however, are
the peaks in correlation at 3, 5, and 7 rotations of the pitch-height timeline, indicating
similar patterns of events at the remove of the dotted-eighth, five-sixteenth, and seventh-
sixteenth periodicities. Similar peaks occur at the same relative points corresponding to
each measure within the correlation graphs.
This unusual series of peaks is due to the repeated figuration arpeggiating the under-

lying chord: in each half-measure pattern, the initial two sixteenth notes are followed by
two repetitions of the same three-note pitch pattern. Because of this, a rotation of three
sixteenths will exactly align this trio of pitches with one another; similarly, a rotation of
five sixteenths will align the second triple group in the first figure (the 6th, 7th, and 8th
events in the prime timeline) with the first triple group in the second figure (the 11th,
12th, and 13th events). Additionally, exemplifying a more fuzzy pattern, the first five
and last three notes of the figure produce consistently rising contours, and rotating the
vector at the remove of those corresponding patterns produces higher correlations than
do rotations of the surrounding values. (Notably, this analysis resonates with the 2+3+3
non-isochronous accent pattern with which Cone (1968) reads in this piece.)
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Figure 4. J.S. Bach’s Well Tempered Clavier, Book 1, Prelude 1, mm. 1-2

These patterns do not align with the notated – and likely perceived – prevailing du-
ple meter of this passage. A human analyst would would almost certainly discard these
triple, quintuple, and septuple patterns as non-metrical, either because their own divi-
sions would be non-isochronous (i.e., they mix duple and triple groups), because they do
not evenly divide the clear half and whole-note pulses, or because they are insu�ciently
regular (they “re-begin” in each measure). However, these patterns do exist in this music,
and a local, pitch-based understanding of this passage would notice such patterns. These
patterns appear to exist in excess of metrical frameworks. Such excessive patterns are
not uncommon within autocorrelated musical timelines (White 2019a), and suggest that
a musical surface includes more isochronous patterns than contribute to the prevailing
meter.

4. Pattern finding and musical meter

The patterns outlined o↵er overlaps with and insights into theoretical and cognitive
conceptions of meter. In what follows, I outline some of these intersections, particularly
in how fuzzy, unbounded, and excessive patterns function in these analyses.

4.1. Fuzzy patterns

These examples consistently feature fuzzy patterns, or patterns whose periodic similari-
ties are identified simply because they were more similar than other periodicities. On the
one hand, such patterns would seem to align with what we know about humans’ capacity
to project metric periodicities onto musical stimuli, even if the stimuli provide very sparse
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cues (Dawe, Platt, and Racine 1994; Toiviainen and Snyder 2003), conflicting/competing
cues (Pfordresher 2003; Prince, Thompson, and Schmuckler 2009; Prince and Rice 2018;
Repp 2007), and even no cues (Bolton 1894; Brochard et al. 2003). Furthermore, once a
listener has entrained to a metric pattern, they have the capacity to continue hearing a
metric pattern even in the face of conflicting or sparse information (London 2004; Krebs
1999; Lerdahl and Jackendo↵ 1983).
On the other hand, fuzzy patterns also have the potential to be at odds with perceived

meter. There are limits to the listeners’ capacities to identify and entrain to patterns
in music, be the patterns too subtle to notice (Fraisse 1946; Szelag et al. 1998; White
2017; Woodrow 1909) or in conflict with a pattern from another musical domain (Ellis
and Jones 2009; London, Himberg, and Cross 2009; Prince, Thompson, and Schmuckler
2009). The subtlety of some of the patterns in the Figure 4, for instance, would seem
di�cult – if not impossible – to hear. While a computational approach, then, might focus
on identifying any pattern present within a musical timeline, some such patterns might
be too fuzzy for a cognitive model. To align a pattern-finding model of musical meter
with cognition, then, one would need to import some definition of what is “too fuzzy”
to be perceived by a human listener to contribute to a felt meter.

4.2. Unbounded patterns

As observed in Eck and Casagrande (2005), any model based solely on recurrent patterns
will not indicate the location of relatively strong beats, or even where a metric pattern
starts. The pattern-finding process simply identifies that events removed by some con-
sistent periodicity are similar. It does not say where those patterns begin. Recall that
Figure 3 included two parallel annotations, that of the four-bar phrase, and that of the
four-bar hypermeter, the former beginning in measure 1, the latter beginning in measure
2. A pattern-finding procedure like autocorrelation does not distinguish between these
two readings: it simply indicates that events are quite similar to events that occur at
the distance of four measures. In order to distinguish the two parsings of this passage,
the process would need some definition of “accent” or “beginning,” and such definitions
are not available to a model that engages purely in period extraction. In other words,
any meter-identifying process that focuses solely on isochronous patterns might be able
to identify the periods with which events recur in some signal, but it will not be able
to assign a downbeat within that period without some further definition of what consti-
tutes a downbeat. I return to this issue in my final comparison with template-matching
procedures. It should be noted that Eck and Casagrande (2005) do indeed devise an
adaptation to autocorrelation that identifies the initiation of patterns; however, their
additions result in their overall method being a hybrid between period extraction and
template matching. Their adaptation uses Shannon entropy to equate more contextually
unusual/less predictable events with metrical stress, something which can be seen to
import a definition of accent to categorize strong and weak pulse layers.

4.3. Excessive patterns

In Figure 4, the triple groupings embedded within the repeated 8-note figure produced
several peaks at periodicities that conflict with the notated duple meter; as noted above,
an analyst or listener would find no shortage of reasons to discard these patterns in favor
of a purely duple reading. But such patterns are present on the musical surface, and they
do pervade the passage. As has been demonstrated elsewhere (Conklin 2010; Jehan 2005;
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White 2019a), discovering patterns on a musical surface poses little problem for a com-
putational model of meter; rather, choosing which patterns to use in the final assessment
presents a challenge. The excessive patterns returned by period extraction also demon-
strates a notable interconnection between meter and other types of musical patterns by
highlighting the porous boundary between metric patterns and motivic/thematic groups.
Indeed, while this paper highlighted the role of automated pattern finding for meter iden-
tification, the identification of recurrent strings of similar musical events has aided the
study of piece-specific and style-generic event sequences (Cambouropoulos 2001; Conklin
2010) as well as musical form (Bañuelos and Orduña 2017). Indeed, researchers have
studied the grey area that exists between recurrent patterns that participate in a meter
and those that are simply thematic, being the focus of both music theorists (Krebs 1999;
Riemann 1903) and cognitive researchers (Acevedo, Temperley, and Pfordresher 2014;
Prince 2014). The output of a period-extracting model like autocorrelation explicitly
shows the shared resources used by (and definitional overlap between) both metric and
motivic musical patterns.

4.4. Periodic pattern finding and meter

In my initial discussion, I invoked London’s dichotomy between period extraction and
template matching as a way to heuristically divide computational approaches into those
that rely on identifying surface patterns versus those that categorize pulses and events.
I also noted that isochronous pattern-finding models have generally been shown to un-
derperform models that involve some manner of expert knowledge or training session.
I end this paper by considering what this apparent imbalance might tell us about the
nature of meter and the cognitive act of meter finding. First, as observed in Jehan (2005),
“downbeat estimation requires some fair amount of prior knowledge”, and the simple act
of period extraction lacks this prior knowledge. This study demonstrates exactly why
this prior knowledge is required, as models such as those used in the current paper lack
the ability to a) provide boundaries on the kinds of imprecise and fuzzy patterns that
are considered salient, b) include some definition of accent or initiation to distinguish
between levels of metric strength, and c) select from the array of possible patterns in such
a way that ensures su�cient regularity and the duple and triple relationships between
pulses. Periodicities on the musical surface are therefore necessary but not su�cient when
determining the perceived or intended meter of a musical passage. While a full review
and comparison of template-matching/categorization models is outside the purview of
this paper, this insu�ciency can be rectified by pre-programming a model with some
definition of accent (McLeod and Steedman 2017) or including a deep-learning training
session (Böck and Davies 2020).
And so: what of period extraction and pattern finding? Regardless of its relative e�-

cacy, isolating periodic patterns within a meter finding task demonstrates the role these
patterns play in the larger concept of meter. At the broadest level, this study suggests
that meter is a phenomenon of interpretation and organization: while isochronous and
recurrent patterns may pervade some musical signal, they remain insu�cient to model
musical meter on their own. More specifically: modeling period extraction allows for a
closer examination of characteristics of recurrent patterns that contribute to musical
meter, yielding – for instance – insights into how those patterns overlap with notions
of motivic grouping. More speculatively: this study’s suggestion that period extraction
is insu�cient to identify a piece’s meter in and of itself has implications for cognitive
and embodied theories of metric entrainment. And yet, a cognitive model of meter is
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a model reliant on isochronous and periodic musical patterns – from a listener’s stand-
point, meter allows for the organization of events into equally spaced patterns that both
explain past events and predict future ones (Hasty 1997; Kozak 2020; London 2004). If
a listener’s experience of a musical meter involves both period extraction and template
matching, this study suggests that the former is crucially reliant on the latter to produce
a coherent metric assessment.
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Bañuelos, Cristian, and Felipe Orduña. 2017. “Dynamic Time Warping for Automatic Musical Form Iden-
tification in Symbolical Music Files.” In Mathematics and Computation in Music, edited by Octavio A.
Agust́ın-Aquino, Emilio Lluis-Puebla, and Mariana Montiel, Cham, 253–258. Springer International
Publishing.
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